⁺*✂️*

⁻*✂️*

⁼*✂️*

ⁿ*✂️*

₊*✂️*

₋*✂️*

₌*✂️*

₍*✂️*

₎*✂️*

✖*✂️*

﹢*✂️*

﹣*✂️*

＋*✂️*

－*✂️*

／*✂️*

＝*✂️*

÷*✂️*

±*✂️*

×*✂️*

∞*✂️*

π*✂️*

Σ*✂️*

⊢*✂️*

⊣*✂️*

⊤*✂️*

⊥*✂️*

⊦*✂️*

⊧*✂️*

⊨*✂️*

⊩*✂️*

⊪*✂️*

⊫*✂️*

⊬*✂️*

⊭*✂️*

⊮*✂️*

⊯*✂️*

⊰*✂️*

⊱*✂️*

⊲*✂️*

⊳*✂️*

⊴*✂️*

⊵*✂️*

⊶*✂️*

⊷*✂️*

⊸*✂️*

⊹*✂️*

⊺*✂️*

⊻*✂️*

⊼*✂️*

⊽*✂️*

⊾*✂️*

⊿*✂️*

⋀*✂️*

⋁*✂️*

⋂*✂️*

⋃*✂️*

⋄*✂️*

⋅*✂️*

⋆*✂️*

⋇*✂️*

⋈*✂️*

⋉*✂️*

⋊*✂️*

⋋*✂️*

⋌*✂️*

⋍*✂️*

⋎*✂️*

⋏*✂️*

⋐*✂️*

⋑*✂️*

⋒*✂️*

⋓*✂️*

⋔*✂️*

⋕*✂️*

⋖*✂️*

⋗*✂️*

⋘*✂️*

⋙*✂️*

⋚*✂️*

⋛*✂️*

⋜*✂️*

⋝*✂️*

⋞*✂️*

⋟*✂️*

⋠*✂️*

⋡*✂️*

⋢*✂️*

⋣*✂️*

⋤*✂️*

⋥*✂️*

⋦*✂️*

⋧*✂️*

⋨*✂️*

⋩*✂️*

⋪*✂️*

⋫*✂️*

⋬*✂️*

⋭*✂️*

α*✂️*

β*✂️*

γ*✂️*

δ*✂️*

ε*✂️*

ζ*✂️*

η*✂️*

θ*✂️*

ι*✂️*

κ*✂️*

λ*✂️*

μ*✂️*

ν*✂️*

ξ*✂️*

ο*✂️*

π*✂️*

ρ*✂️*

σ*✂️*

τ*✂️*

υ*✂️*

φ*✂️*

χ*✂️*

ψ*✂️*

ω*✂️*

⋮*✂️*

⋯*✂️*

⋰*✂️*

⋱*✂️*

⁽*✂️*

⁾*✂️*

√*✂️*

∛*✂️*

∜*✂️*

∫*✂️*

∬*✂️*

∭*✂️*

∮*✂️*

∯*✂️*

∰*✂️*

∱*✂️*

∲*✂️*

∳*✂️*

∀*✂️*

∁*✂️*

∂*✂️*

∃*✂️*

∄*✂️*

∅*✂️*

∆*✂️*

∇*✂️*

∈*✂️*

∉*✂️*

∊*✂️*

∋*✂️*

∌*✂️*

∍*✂️*

∎*✂️*

∏*✂️*

∐*✂️*

∑*✂️*

−*✂️*

∓*✂️*

∔*✂️*

∕*✂️*

∖*✂️*

∗*✂️*

∘*✂️*

∙*✂️*

∝*✂️*

∟*✂️*

∠*✂️*

∡*✂️*

∢*✂️*

∣*✂️*

∤*✂️*

∥*✂️*

∦*✂️*

∧*✂️*

∨*✂️*

∩*✂️*

∪*✂️*

∴*✂️*

∵*✂️*

∶*✂️*

∷*✂️*

∸*✂️*

∹*✂️*

∺*✂️*

∻*✂️*

∼*✂️*

∽*✂️*

∾*✂️*

∿*✂️*

≀*✂️*

≁*✂️*

≂*✂️*

≃*✂️*

≄*✂️*

≅*✂️*

≆*✂️*

≇*✂️*

≈*✂️*

≉*✂️*

≊*✂️*

≋*✂️*

≌*✂️*

≍*✂️*

≎*✂️*

≏*✂️*

≐*✂️*

≑*✂️*

≒*✂️*

≓*✂️*

≔*✂️*

≕*✂️*

≖*✂️*

≗*✂️*

≘*✂️*

≙*✂️*

≚*✂️*

≛*✂️*

≜*✂️*

≝*✂️*

≞*✂️*

≟*✂️*

≠*✂️*

≡*✂️*

≢*✂️*

≣*✂️*

≦*✂️*

≧*✂️*

≤*✂️*

≥*✂️*

≨*✂️*

≩*✂️*

≪*✂️*

≫*✂️*

≬*✂️*

≭*✂️*

≮*✂️*

≯*✂️*

≰*✂️*

≱*✂️*

≲*✂️*

≳*✂️*

≴*✂️*

≵*✂️*

≶*✂️*

≷*✂️*

≸*✂️*

≹*✂️*

≺*✂️*

≻*✂️*

≼*✂️*

≽*✂️*

≾*✂️*

≿*✂️*

⊀*✂️*

⊁*✂️*

⊂*✂️*

⊃*✂️*

⊄*✂️*

⊅*✂️*

⊆*✂️*

⊇*✂️*

⊈*✂️*

⊉*✂️*

⊊*✂️*

⊋*✂️*

⊌*✂️*

⊍*✂️*

⊎*✂️*

⊏*✂️*

⊐*✂️*

⊑*✂️*

⊒*✂️*

⊓*✂️*

⊔*✂️*

⊘*✂️*

⊙*✂️*

⊚*✂️*

⊛*✂️*

⊜*✂️*

⊝*✂️*

⊞*✂️*

⊟*✂️*

⊠*✂️*

⊡*✂️*

⊕*✂️*

⊖*✂️*

⊗*✂️*

Mathematics uses a wide range of symbols to represent concepts, operations, and relationships. Some commonly used math symbols include:

1. Plus (+) and Minus (-): The plus symbol represents addition, while the minus symbol represents subtraction. They are used to combine or separate quantities.

2. Multiplication (×) and Division (÷): The multiplication symbol denotes multiplication, and the division symbol represents division. They are used to perform these operations on numbers or variables.

3. Equality (=): The equality symbol indicates that two quantities are equal. It is used to express equations and compare values.

4. Greater Than (>) and Less Than (<): These symbols are used to compare the relative size or magnitude of two quantities. Greater than indicates that one value is larger, while less than indicates that one value is smaller.

5. Summation (∑): The summation symbol represents the sum of a series of numbers or terms. It is used in mathematical notation to express the total value obtained by adding all the terms together.

6. Pi (π): Pi is a mathematical constant representing the ratio of a circle's circumference to its diameter. It is approximately equal to 3.14159 and is used in various mathematical formulas.

Arrow
Astrological
Animal
Bracket
Bullet Points
Card
Check Mark
Chess
Chinese
Circle
Comparison
Copyright
Cross
Currency
Degree
Dice
Email
Flower
Food
Fraction
Fruit
Gender
Greek
Hand
Heart
Japanese
Keyboard
Korean
Latin
Line
Locks and Keys
Marriage
Math
Menu
Moon
Music
Number
Paragraph
Peace
Phonetic
Pi
Punctuation
Rectangle
Religion
Road Signs
Roman
Scissors
Smile Face
Square
Star
Sun
Technical
Time
Trademark
Triangle
Unit
Weather
Writing
Zodiac